
Threads & NetworkingThreads & Networking

C# offers facilities for multi threading and C# offers facilities for multi threading and
network programmingnetwork programming

an application roughly corresponds to a process, an application roughly corresponds to a process,
handled by the OShandled by the OS

time sharing simulates multi taskingtime sharing simulates multi tasking

inside an application : several execution threadsinside an application : several execution threads

MultitaskingMultitasking

P1 P2 P3

T3_1 T3_2

time

P1 P2 P
3

T
3
1

T
3
2

P1 P2 P
3

T
3
1

T
3
2

MultithreadingMultithreading

thread = 'light' process thread = 'light' process

several threads belonging to a single application several threads belonging to a single application
share the same memory space : efficient share the same memory space : efficient
communicationcommunication

the main process is a thread : the main threadthe main process is a thread : the main thread

easy creation of a thread associated to a method :easy creation of a thread associated to a method :

the method is ran independantly of the programthe method is ran independantly of the program

MultithreadingMultithreading

the method is run 'out of sequence' the method is run 'out of sequence'
(asynchronously) and sometimes needs (asynchronously) and sometimes needs
synchronization with other threads.synchronization with other threads.

Thread class implements _Thread interfaceThread class implements _Thread interface

public public sealedsealed class Thread : _Thread class Thread : _Thread

{…}{…}

Creating a thread : exampleCreating a thread : example
class testclass test
{{

static void run()static void run()
{{

// some interesting code inside// some interesting code inside
}}

static void Main(string[] args)static void Main(string[] args)
{{

Thread th0 = new Thread(new ThreadStart(Thread th0 = new Thread(new ThreadStart(runrun));));

th0.start();th0.start();
}}

}}

class thAppclass thApp
{{

public static public static voidvoid countup() countup()
{{

long i;long i;
for (i=1; i <=100;i++)for (i=1; i <=100;i++)
{{

System.Console.WriteLine(i.ToString());System.Console.WriteLine(i.ToString());
}}

}}
}}

class testclass test
{{

static void Main(string[] args)static void Main(string[] args)
{{

Thread th0 = new Thread(new ThreadStart(Thread th0 = new Thread(new ThreadStart(thApp.countupthApp.countup));));
th0.start();th0.start();

}}
}}

class thApp2class thApp2
{{

public public voidvoid hello() hello()
{{

System.Console.WriteLine("hello world !");System.Console.WriteLine("hello world !");
}}

}}

class testclass test
{{

static void Main(string[] args)static void Main(string[] args)
{{

thApp2 myvar = new thApp2();thApp2 myvar = new thApp2();

Thread th0 = new Thread(new ThreadStart(Thread th0 = new Thread(new ThreadStart(mavar.hellomavar.hello));));
th0.start();th0.start();

}}
}}

Parameterized Thread

Foo parameter = // get parameter value

Thread thread = new Thread(new ParameterizedThreadStart(DoMethod));

thread.Start(parameter); // overloaded method

// signature of function should not be changed ! (part of a delegate)

private void DoMethod(object obj)

{

 Foo parameter = (Foo)obj;

 // ...

}

Parmeterized Thread

 The best way to do it is to use your own class
that contains state

 Type safe compared to the previous example
that passes an object
 This could raise an exception if the object is not

an instance of the correct type !

Parameterized Thread
public class ThreadWithState

{

 // State information used in the task.

 private string boilerplate;

 private int value;

 // The constructor obtains the state information.

 public ThreadWithState(string text, int number)

 {

 boilerplate = text;

 value = number;

 }

 // The thread procedure performs the task, such as formatting

 // and printing a document.

 public void ThreadProc()

 {

 Console.WriteLine(boilerplate, value);

 }

}

Parameterized Thread

public static void Main()

 {

 // Supply the state information required by the task.

 ThreadWithState tws = new ThreadWithState(

 "This report displays the number {0}.", 42);

 // Create a thread to execute the task, and then

 // start the thread.

 Thread t = new Thread(new ThreadStart(tws.ThreadProc));

 t.Start();

 Console.WriteLine("Main thread does some work, then waits.");

 t.Join();

 Console.WriteLine(

 "Independent task has completed; main thread ends.");

 }

Destroying a Thread

 Use « Abort » function
 Stops the thread and the CLR raises throws a

ThreadAbortException in the target thread
 The Abort method does not cause the thread

to abort immediately
 the target thread can catch the

ThreadAbortException and execute arbitrary
amounts of code in a finally block

SynchronizationSynchronization
class test
{

static void Main(string[] args)
{
Thread th0 = new Thread(new threadStart(thApp.countup));
th0.start();

thApp2 myvar = new thApp2();

th0 = new Thread(new ThreadStart(myvar.hello));
th0.start();

// don't forget the pause
}

}

SynchronizationSynchronization

1
2
3
…
22
hello world !
23
24
…
99
100

1
2
3
4
hello world !
5
6
7
…
99
100

1
2
3
…
22
23
24
…
99
100
hello world !

executing the program 3 times gives the following
result :

SynchronizationSynchronization

to ensure synchronization, use :to ensure synchronization, use :

 sleep()sleep()
 abort()abort()
 join()join()
 interrupt()interrupt()

locks & semaphoreslocks & semaphores

several threads sharing a resourceseveral threads sharing a resource

critical section : exclusive executioncritical section : exclusive execution

use a lock to ensure exclusivityuse a lock to ensure exclusivity

locks & semaphoreslocks & semaphores

in each thread willing to access an exclusive in each thread willing to access an exclusive
resource :resource :

object access_grant=new object();

lock(access_grant)

{

critical section;

}

locks & semaphoreslocks & semaphores

problem : problem : access_grantaccess_grant is local to each thread : use a is local to each thread : use a
static object to share among threadsstatic object to share among threads

class myThreadclass myThread
{{

staticstatic object access_grant = new object(); object access_grant = new object();

public void myMethod()public void myMethod()
{{

lock(access_grant)lock(access_grant)
{{

critical section;critical section;
}}

}}
}}

locks & semaphoreslocks & semaphores
class testclass test
{{

static void Main(string [] args)static void Main(string [] args)
{{

myThread [] progs = new myThread[3];myThread [] progs = new myThread[3];

foreach (myThread m in progs)foreach (myThread m in progs)
{{
 new Thread(new new Thread(new

ThreadStart(m.myMethod)).Start();ThreadStart(m.myMethod)).Start();

}}
}}

}}

locks & semaphoreslocks & semaphores

if a thread asks for access while already locked :if a thread asks for access while already locked :

thread is queued wrt the access_grant object.thread is queued wrt the access_grant object.

use the Monitor class to check access_grant use the Monitor class to check access_grant
status before entering critical sectionstatus before entering critical section

Monitor classMonitor class

object access_grant = new object();object access_grant = new object();

Monitor.Enter(access_grant);Monitor.Enter(access_grant);

critical section;critical section;

Monitor.Exit(access_grant);Monitor.Exit(access_grant);

TryEnter method : if the resource is locked, do TryEnter method : if the resource is locked, do
something else.something else.

Monitor classMonitor class
if (Monitor.TryEnter(access_grant)) if (Monitor.TryEnter(access_grant))

// true if resource is available// true if resource is available

{{

critical section codecritical section code

}}

elseelse

{{

do something interesting anywaydo something interesting anyway

}}

Semaphore and MutexSemaphore and Mutex

to synchronize threads and processus :use to synchronize threads and processus :use
the Semaphore and Mutex classesthe Semaphore and Mutex classes

static Semaphore sem(0,n); // initial static Semaphore sem(0,n); // initial
and max threads allowe to possess and max threads allowe to possess
the semaphorethe semaphore

sem.WaitOne()sem.WaitOne()
critical sectioncritical section
sem.Release()sem.Release()

Semaphore and MutexSemaphore and Mutex

a Mutex is a Semaphore with initial a Mutex is a Semaphore with initial
count=0 ans a max count = 1count=0 ans a max count = 1

for more informations on semaphores, locks, for more informations on semaphores, locks,
monitors, see your OS documentation.monitors, see your OS documentation.

Working with processesWorking with processes

a little break in theory

how to list processes on the local computer

use the System.Diagnostics classes and the Process
class

Working with processesWorking with processes
class test
{

static void Main(string [] args)
{

Process [] locals = Process.GetProcesses();

foreach(Process p in locals)
{

System.Console.Write(p.ProcessName);
}

// pause
}

}

Working with processesWorking with processes
class test
{

static void Main(string [] args)
{

Process appex = new Process();

appex.StartInfo.FileName = "path_to_exe";

appex.StartInfo.UseShellExecute = false;

appex.StartInfo.RedirectStandardOutput = false;

appex.Start(); // target application starts here

// pause
}

}

Executing a standard application
(any .exe) from a C# program

Networking made easyNetworking made easy

use System.Net and System.Net.Sockets

C# : TcpListener and TcpClient classes

server client

1
listen to connections
trough a TcpListener

2
connection to server
through a TcpClient

3 connection is accepted :
dialog through a TcpClient

4 dialog through TcpClients

Sample server codeSample server code
class server
{

private TcpListener ear;
private TcpClient cli_sock;

public server()
{

byte [] local_IP ={127,0,0,1};

ear = new TcpListener(new IPAdress(local_IP),8080);

ear.start();

cli_sock = ear.AcceptTcpClient(); // blocking

// now talk with the client
}

}

Sample client codeSample client code
class client

{

private TcpClient sock;

public client()

{

sock = new TcpClient("server_name",8080);

// now talk with the server if connected

}

}

Multi client serverMulti client server

Server

TcpListener
Client

TcpClient
connexion

Connexion
acceptance

TcpClient

Thread

working with streamsworking with streams

input and output streams to read/write with
TcpClient objects

StreamReader in=new StreamReader(sock.GetStream());

StreamWriter out=new StreamWriter(sock.getStream());

out.AutoFlush=true;

read data with in.ReadLine();

write data with out.WriteLine();

networks and threadsnetworks and threads

sockets (TcpClient objects) may send and
receive information at any time :

use a thread to run a method that receives
information :

while (connection is valid)

{

read data sent by the server-side socket;

}

CommunicationCommunication

network applications :

using sockets and a communication protocol

 dedicated to the application;

 existing protocol : SMTP, FTP, HTTP,
SOAP : Web development.

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34

